

Revenge 25

April 2016

April 5, 2016 8:00 PM - 8:40 PM ET

Calculators and other computational aids are not allowed.

Problem 1. In quadrilateral ABCD, $AB \parallel CD$ and $BC \perp AB$. Lines AC and BD intersect at E. If AB = 20, BC = 2016, and CD = 16, find the area of $\triangle BCE$.

Problem 2. A time is chosen randomly and uniformly in an 24-hour day. The probability that at that time, the (non-reflex) angle between the hour hand and minute hand on a clock is less than $\frac{360}{11}$ degrees is $\frac{m}{n}$ for coprime positive integers m and n. Find 100m + n.

Problem 3. David, Kevin, and Michael each choose an integer from the set $\{1, 2, ..., 100\}$ randomly, uniformly, and independently of each other. The probability that the positive difference between David's and Kevin's numbers is *strictly* less than that of Kevin's and Michael's numbers is $\frac{m}{n}$, for coprime positive integers m and n. Find 100m + n.

Problem 4. Let S be the set of all pairs of positive integers (x, y) for which $2x^2 + 5y^2 \le 5 + 6xy$. Compute $\sum_{(x,y)\in S} (x+y+100)$.

Problem 5. Bob starts with an empty whiteboard. He then repeatedly chooses one of the digits $1, 2, \ldots, 9$ (uniformly at random) and appends it to the end of the currently written number. Bob stops when the number on the board is a multiple of 25. Let E be the expected number of digits that Bob writes. If $E = \frac{m}{n}$ for relatively prime positive integers m and n, find 100m + n.

Problem 6. As a reward for working for NIMO, Evan divides 100 indivisible marbles among three of his volunteers: David, Justin, and Michael. (Of course, each volunteer must get at least one marble!) However, Evan knows that, in the middle of the night, Lewis will select a positive integer n > 1 and, for each volunteer, steal exactly $\frac{1}{n}$ of his marbles (if possible, i.e. if n divides the number of marbles). In how many ways can Evan distribute the 100 marbles so that Lewis is unable to steal marbles from every volunteer, regardless of which n he selects?

Problem 7. Let $(a_1, a_2, ..., a_{13})$ be a permutation of (1, 2, ..., 13). Ayvak takes this permutation and makes a series of *moves*, each of which consists of choosing an integer i from 1 to 12, inclusive, and swapping the positions of a_i and a_{i+1} . Define the *weight* of a permutation to be the minimum number of moves Ayvak needs to turn it into (1, 2, ..., 13).

The arithmetic mean of the weights of all permutations (a_1, \ldots, a_{13}) of $(1, 2, \ldots, 13)$ for which $a_5 = 9$ is $\frac{m}{n}$, for coprime positive integers m and n. Find 100m + n.

Problem 8. Rectangle EFGH with side lengths 8, 9 lies inside rectangle ABCD with side lengths 13, 14, with their corresponding sides parallel. Let $\ell_A, \ell_B, \ell_C, \ell_D$ be the lines connecting A, B, C, D, respectively, with the vertex of EFGH closest to them. Let $P = \ell_A \cap \ell_B$, $Q = \ell_B \cap \ell_C$, $R = \ell_C \cap \ell_D$, and $S = \ell_D \cap \ell_A$. Suppose that the greatest possible area of quadrilateral PQRS is $\frac{m}{n}$, for relatively prime positive integers m and n. Find 100m + n.