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1. Find the smallest positive integer that is relatively prime to each of 2, 20, 204, and 2048.

Proposed by Yannick Yao.

Answer. 1 .

Solution. 1 is the smallest positive integer. 1 is also relatively prime to every positive integer. There-
fore the answer is 1.

2. A positive integer n is called bad if it cannot be expressed as the product of two distinct positive
integers greater than 1. Find the number of bad positive integers less than 100.

Proposed by Michael Ren.

Answer. 30 .

Solution. If n is a prime number or 1, then it is certainly bad since it has no more than one factor
greater than 1. If n = p2 for some prime p, then the only ways to express it as a product of integers
greater than 1 is p · p, but the two numbers are not distinct. For all other cases of n, setting one factor
to be the smallest prime divisor of n always work. Therefore, since there are 26 non-composites less
than 100 (including 1) and 4 prime squares (22, 32, 52, 72), there are 26 + 4 = 30 bad positive integers
less than 100.

3. In rectangle ABCD, AB = 6 and BC = 16. Points P,Q are chosen on the interior of side AB such that
AP = PQ = QB, and points R,S are chosen on the interior of side CD such that CR = RS = SD.
Find the area of the region formed by the union of parallelograms APCR and QBSD.

Proposed by Yannick Yao.

Answer. 56 .

Solution. Suppose that AR and BS, BS and CP , CP and DQ, DQ and AR intersect at W,X, Y, Z
respectively, then the quadrilateral WXY Z is a rhombus, where XZ = AP = AB

3 = 2 = PQ. This

also implies that triangles PQY,XZY,ZXW,RSW are all congruent, and thus WY = BC
2 = 8. The

area of the union is therefore 2 · 16 · 2− 2·8
2 = 56.

4. Lunasa, Merlin, and Lyrica each has an instrument. We know the following about the prices of their
instruments:

• If we raise the price of Lunasa’s violin by 50% and decrease the price of Merlin’s trumpet by 50%,
the violin will be $50 more expensive than the trumpet;

• If we raise the price of Merlin’s trumpet by 50% and decrease the price of Lyrica’s piano by 50%,
the trumpet will be $50 more expensive than the piano.

Given these conditions only, there exist integers m and n such that if we raise the price of Lunasa’s
violin by m% and decrease the price of Lyrica’s piano by m%, the violin must be exactly $n more
expensive than the piano. Find 100m+ n.

Proposed by Yannick Yao.

Answer. 8080 .

Solution. Let V, T, P be the original price of the violin, trumpet, and the piano. We have 1.5V −50 =
0.5T and 1.5T − 50 = 0.5P , which gives 9V − 400 = P , and we want (1 +m%)V −n = (1−m%)P for
all V and P satisfying the previous relation. This requires 1+m%

1−m% = 9, and solving the equation gives

m = 80, and thus n = 400
9 (1 +m%) = 80. Therefore we get 100m+ n = 8080.

1



OMO Spring 2017
Official Solutions

5. There are 15 (not necessarily distinct) integers chosen uniformly at random from the range from 0 to
999, inclusive. Yang then computes the sum of their units digits, while Michael computes the last three
digits of their sum. The probability of them getting the same result is m

n for relatively prime positive
integers m,n. Find 100m+ n.

Proposed by Yannick Yao.

Answer. 200 .

Solution. Suppose the first 14 integers and the last digit of the 15th integer has already been deter-
mined, so Yang’s result is fixed and is less than 150, and is guaranteed to match Michael’s sum in its
unit digit. There’s a 1

100 probability that the first two digits of the 15th integer will make Michael’s
result match Yang’s, so the answer is 100(1) + 100 = 200.

6. Let ABCDEF be a regular hexagon with side length 10 inscribed in a circle ω. X, Y , and Z are points
on ω such that X is on minor arc AB, Y is on minor arc CD, and Z is on minor arc EF , where X
may coincide with A or B (And similarly for Y and Z). Compute the square of the smallest possible
area of XY Z.

Proposed by Michael Ren.

Answer. 7500 .

Solution. Suppose that O is the center of ω, and WLOG suppose that A,B,C,D,E, F are labeled
clockwise. Let segments OX,OY,OZ intersect segments AB,CD,EF at X ′, Y ′, Z ′ respectively. Since
none of ∠XOY,∠Y OZ,∠ZOX exceeds 180 degrees (when measured from X to Y to Z to X in
clockwise direction), X ′, Y ′, Z ′ lie on the boundary or interior of XY Z and thus [X ′Y ′Z ′] ≤ [XY Z].
When two of X ′, Y ′, Z ′ are fixed, one can always slide the third point to an endpoint of the segment
without increasing the area, which means that in order to minimize the area of X ′Y ′Z ′, one can assume
that all three vertices are vertices of the hexagon. Such triangles take on one of two forms: one is

an equilateral triangle with side lengths 10
√

3 and area
√

3
4 (10

√
3)2 = 75

√
3, and the other is a right

triangle with side lengths 10, 10
√

3, 20 and area 1
2 (10)(10

√
3) = 50

√
3. Obviously the second one is

smaller; therefore the minimum area of X ′Y ′Z ′ is 50
√

3 and consequently that is also the minimum area
of XY Z, achieved when X = X ′ = A, Y = Y ′ = C,Z = Z ′ = D. So the answer is (50

√
3)2 = 7500.

7. Let S be the set of all positive integers between 1 and 2017, inclusive. Suppose that the least common
multiple of all elements in S is L. Find the number of elements in S that do not divide L

2016 .

Proposed by Yannick Yao.

Answer. 44 .

Solution. Since the highest powers of 2, 3, 7 below 2017 are 210, 36, 73 respectively, the highest powers
of 2, 3, 7 dividing L

2016 are 210−5 = 25, 36−2 = 34, 73−1 = 72 respectively. Therefore, those that do

not divide L
2016 must be a multiple of 26 = 64, 35 = 243, or 73 = 343. Since a number between 1 and

2017 cannot be a multiple of two of the three numbers, we only need to count the 31 multiples of 64,
8 multiples of 243, and 5 multiples of 343, for 31 + 8 + 5 = 44 numbers in total.

8. A five-digit positive integer is called k-phobic if no matter how one chooses to alter at most four of the
digits, the resulting number (after disregarding any leading zeroes) will not be a multiple of k. Find
the smallest positive integer value of k such that there exists a k-phobic number.

Proposed by Yannick Yao.

Answer. 11112 .
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Solution. When k ≤ 10000, each of the intervals [10000, 19999], [20000, 29999], . . . , [90000, 99999] con-
tains a multiple of 9 since each interval contains 10000 consecutive integers. When 10000 < k ≤ 11111,
these intervals contain k, 2k, . . . , 9k respectively. Therefore, for any k ≤ 11111, there exists a mul-
tiple of k with any leading digit, so there does not exist a k-phobic number since one can keep the
leading digit and change the rest to have a multiple of k. When k = 11112, the only multiples in
range are 00000, 11112, 22224, 33336, 44448, 55560, 66672, 77784, 88896, so we can see that 99959 is a
11112-phobic number, so 11112 is the smallest number that satisfies the condition.

9. Kevin is trying to solve an economics question which has six steps. At each step, he has a probability
p of making a sign error. Let q be the probability that Kevin makes an even number of sign errors
(thus answering the question correctly!). For how many values of 0 ≤ p ≤ 1 is it true that p+ q = 1?

Proposed by Evan Chen.

Answer. 2 .

Solution. Let (a, b) = (p, 1− p). Then the desired probability is
(

6
0

)
a6 +

(
6
2

)
a4b2 +

(
6
4

)
a2b4 +

(
6
6

)
b6 =

1
2

(
(a+ b)6 + (a− b)6

)
= 1

2

(
1 + (2p− 1)6

)
. Setting this equal to 1− p gives (2p− 1)6 = 1− 2p, which

has p = 1
2 , p = 0 as real solutions.

10. When Cirno walks into her perfect math class today, she sees a polynomial P (x) = 1 (of degree 0) on
the blackboard. As her teacher explains, for her pop quiz today, she will have to perform one of the
two actions every minute:

• Add a monomial to P (x) so that the degree of P increases by 1 and P remains monic;

• Replace the current polynomial P (x) by P (x + 1). For example, if the current polynomial is
x2 + 2x+ 3, then she will change it to (x+ 1)2 + 2(x+ 1) + 3 = x2 + 4x+ 6.

Her score for the pop quiz is the sum of coefficients of the polynomial at the end of 9 minutes. Given
that Cirno (miraculously) doesn’t make any mistakes in performing the actions, what is the maximum
score that she can get?

Proposed by Yannick Yao.

Answer. 5461 .

Solution. Notice that the sum of coefficients is simply P (1). Call the two actions type-(i) and type-
(ii) respectively. It is not difficult to see that doing a type-(i) action on a degree-(n − 1) polynomial
simply means adding the term xn. Suppose that an xn term is added before m type-(ii) actions,
then this term will contribute (m + 1)n to the value of P (1). Therefore, among all strategies with k
type-(i) actions and 9 − k type-(ii) actions, the optimal one will have all the type-(i) actions precede

the type-(ii) actions, and the maximal sum is (10 − k)0 + (10 − k)1 + · · · + (10 − k)k = (10−k)k+1−1
9−k ,

and we want to maximize this value over k = 0, 1, . . . , 9. When k = 0, 1, . . . , 8, the value of the RHS is
equal to 1, 10, 73, 400, 1555, 3906, 5461, 3280, 511 respectively. (Note that when k = 9, the value of the
expression is 10 even though the RHS is not defined.) Therefore Cirno can get at most 5461 points for
her pop quiz.

11. Let a1, a2, a3, a4 be integers with distinct absolute values. In the coordinate plane, let A1 = (a1, a
2
1),

A2 = (a2, a
2
2), A3 = (a3, a

2
3) and A4 = (a4, a

2
4). Assume that lines A1A2 and A3A4 intersect on the

y-axis at an acute angle of θ. The maximum possible value for tan θ can be expressed in the form
m

n
for relative prime positive integers m and n. Find 100m+ n.

Proposed by James Lin.

Answer. 503 .
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Solution. Consider two cases:

Case 1: the two lines intersect on the positive y-axis. Without loss of generality, assume that a1 <
a3 < 0 < a2 < a4, and let p = −a1, q = a2, r = −a3, s = a4. It is not difficult to see that the line

through (−u, u2) and (v, v2) has slope v2−u2

v−(−u) = v − u, and intersect the y-axis at the point (0, uv),

which implies that pq = rs.

If both (or neither) of p < q and r < s are true, then both lines have positive (or negative) slopes,
which means that θ < 45◦.

Otherwise, we assume p > q and r < s, and therefore θ = 180◦ − tan−1(p − q) − tan−1(s − r). Since
tan−1(1) = 45◦ and thus θ < 90◦, we should make both p − q and s − r as small as possible. Since
p, q, r, s are all distinct, it is not difficult to see that |(p− q)− (s− r)| ≥ 2. Moreover, we can make one
of them 1 and the other 4 by setting (p, q, r, s) = (6, 2, 3, 4) (and θ > 45◦), but (p − q, s − r) = (1, 3)
or (3, 1) is impossible since it would imply that p, q, r, s are consecutive integers in some order, which
cannot satisfy pq = rs. Therefore, the maximum possible value of tan θ in this case is − 1+4

1−1·4 = 5
3 .

Case 2: the two lines intersect on the non-positive y-axis. In this case, we can see that all four points
lie on the same side of y-axis, and so the slopes of both lines are both integers and have the same sign,
and thus θ < 45◦, which we need not consider since we have already found a bigger θ.

Therefore, the maximum possible value of tan θ is 5
3 , and the answer is 503.

12. Alice has an isosceles triangle M0N0P , where M0P = N0P and ∠M0PN0 = α◦. (The angle is measured
in degrees.) Given a triangle MiNjP for nonnegative integers i and j, Alice may perform one of two
elongations:

• an M -elongation, where she extends ray
−−→
PMi to a point Mi+1 where MiMi+1 = MiNj and then

removes the point Mi.

• an N -elongation, where she extends ray
−−→
PNj to a point Nj+1 where NjNj+1 = MiNj and then

removes the point Nj .

After a series of 5 elongations, k of which were M -elongations, Alice finds that triangle MkN5−kP is
an isosceles triangle. Given that 10α is an integer, compute 10α.

Proposed by Yannick Yao.

Answer. 264 .

Solution. For each triangle PMiNj , consider the ratio ∠Mi

∠Nj
= m

n . After one M -elongation, we see that

∠Mi+1 = ∠Mi/2 and ∠N ′j = ∠Nj + ∠Mi/2, which means that ∠Mi+1

∠N ′j
= m/2

n+m/2 = m
2n+m = m

n+(n+m) .

Similarly, one N -elongation will change the ratio to m+(m+n)
n . Notice that since initially the ratio is 1

1 ,
and each elongation will double the sum of numerator and denominator, the sum of the numerator and
denominator after t elongations is 2t+1 (and since both numerator and denominator are odd, this also
implies that they will always be relatively prime). Moreover, if we express both m and n in binary, the
t-th elongation will add a 1 at the (t+ 1)− th digit from the right on either m or n. It is not difficult
to see that any pair of (m,n) that are both odd with sum 2t+1 is achievable with some combinations
of M - and N - elongations.

After 5 elongations, the sum of the numerator and denominator is 26 = 64, and since the final triangle
is isosceles, ∠P must be equal to one of the other two angles (since m 6= n starting with the first
elogation, ∠Mi 6= ∠Nj). Therefore, the sum of 64 and one of the m and n needs to be an odd factor
of 10 · 180 = 1800, and since this sum is between 64 + 1 = 65 and 64 + 63 = 127, the only possibility
is 64 + 11 = 75, achieved when (m,n) = (11, 53) or (53, 11). Thus we can see that the desired ratio is
α = 180 · 11

75 = 26.4 and therefore 10α = 264.
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13. On a real number line, the points 1, 2, 3, . . . , 11 are marked. A grasshopper starts at point 1, then
jumps to each of the other 10 marked points in some order so that no point is visited twice, before
returning to point 1. The maximal length that he could have jumped in total is L, and there are N
possible ways to achieve this maximum. Compute L+N .

Proposed by Yannick Yao.

Answer. 28860 .

Solution. It’s not difficult to see that the longest length is L = 2+4+6+8+10+10+8+6+4+2 = 60,
by counting the maximal number of times each unit segment gets covered. Moreover, one can show
that each jump must either jump from one of the first 5 points to the last 5 points, or vice versa, or
jumping to/from point 6. (The point before and after 6 must also belong to different sides). Using this,
we may ultimately compute that the number of ways is N = 2(5!)2 = 28800. Therefore the answer is
N + L = 28860.

14. Let ABC be a triangle, not right-angled, with positive integer angle measures (in degrees) and circum-
center O. Say that a triangle ABC is good if the following three conditions hold:

• There exists a point P 6= A on side AB such that the circumcircle of 4POA is tangent to BO.

• There exists a point Q 6= A on side AC such that the circumcircle of 4QOA is tangent to CO.

• The perimeter of 4APQ is at least AB +AC.

Determine the number of ordered triples (∠A,∠B,∠C) for which 4ABC is good.

Proposed by Vincent Huang.

Answer. 59 .

Solution. The first two conditions imply that ∠OBP = ∠BAO = ∠POB, which means that BPO
is similar to triangle BOA, and analogously triangle CQO is similar to COA. This requires that
AB,AC > R or equivalently, ∠B,∠C > 30◦.

We can also see that BP = PO and similarly CQ = QO. Therefore AB+AC = AP+PO+QO+AQ ≥
AP + PQ+AQ, so ABC is good if and only if equality holds, i.e. P,O,Q are collinear in that order.
In particular, O is on or inside triangle ABC so ABC is acute or right.

But collinearity in this order occurs if and only if ∠POB+∠BOC+∠COQ = 180◦, i.e. (90◦−∠C) +
2∠A+ (90◦−∠B) = 180◦, which is equivalent to ∠A = 60◦. Since ∠B,∠C > 30◦, ∠B can range from
31◦ to 89◦, resulting in 59 good triangles.

15. Let φ(n) denote the number of positive integers less than or equal to n which are relatively prime to
n. Over all integers 1 ≤ n ≤ 100, find the maximum value of φ(n2 + 2n)− φ(n2).

Proposed by Vincent Huang.

Answer. 72 .

Solution. It’s well known that φ(n2) = nφ(n). When n is odd, φ(n2 + 2n) = φ(n)φ(n+ 2), and when
n is even, φ(n2 + 2n) = 2φ(n)φ(n+ 2).

Let f(n) = φ(n2 + 2n)− φ(n2). Then when n is even, f(n) = φ(n)[2φ(n+ 2)− n]. Since n+ 2 is even,
φ(n+ 2) ≤ n+2

2 with equality if and only if n+ 2 is a power of 2. When n+ 2 is not a power of 2, then
f(n) ≤ 0. When n + 2 is a power of 2, f(n) = 2φ(n) ≤ n. Since n + 2 ≤ 102, the largest power of 2
that n+ 2 can obtain is 64, giving f(n) ≤ 62.

When n is odd, f(n) = φ(n)[φ(n + 2) − n]. Note that φ(n + 2) ≤ n + 1 with equality if and only if
n+ 2 is a prime. When n+ 2 is not a prime, then f(n) ≤ 0. When n+ 2 is a prime, f(n) = φ(n) ≤ n.

5
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Note that when n+2 = 101, 97, 89, 83, 79, we get that f(n) = 60, 72, 56, 54, 60, respectively. Otherwise,
n+ 2 ≤ 73 =⇒ f(n) ≤ 71.

Hence the maximum value of f(n) is achieved when n = 95, giving an answer of 72.

16. Let S denote the set of subsets of {1, 2, . . . , 2017}. For two sets A and B of integers, define A◦B as the
symmetric difference of A and B. (In other words, A ◦ B is the set of integers that are an element of
exactly one of A and B.) Let N be the number of functions f : S → S such that f(A◦B) = f(A)◦f(B)
for all A,B ∈ S. Find the remainder when N is divided by 1000.

Proposed by Michael Ren.

Answer. 112 .

Solution. Consider each element A of S as a 2017-dimensional vector vA with entries in F2, such that
the ith entry of vA equal to 1 if i ∈ A and 0 otherwise. Define wA similarly with respect to f(A).
Note that we have the condition wA+B = wA◦B = wA ◦ wB = wA + wB , so the problem now becomes
determining the number of linear maps on F2017

2 . By setting A = B = ∅, we have w∅ = w∅+∅ =
w∅ +w∅ = 0, so the empty set must map to itself. Moreover, the vectors v{1}, v{2}, . . . , v{2017} are the
basis of F2017

2 , so one can assign each of w{1}, w{2}, . . . , w{2017} to any one of the 22017 vectors which also

determines all other mappings consistently (because of linearity). Thus there are (22017)2017 = 220172

possible functions, and we can reduce 220172 ≡ 289 ≡ (27)12 · 25 ≡ 312 · 32 ≡ 112 (mod 125) and thus

220172 ≡ 112 (mod 1000).

A more combinatorial way to phrase this solution would be to note that empty set must go to empty set
by setting A and B to be the empty set and that setting the outputs of {1}, {2}, . . . , {2017} uniquely
determines the entire function.

17. Let ABC be a triangle with BC = 7, AB = 5, and AC = 8. Let M,N be the midpoints of sides
AC,AB respectively, and let O be the circumcenter of ABC. Let BO,CO meet AC,AB at P and Q,
respectively. If MN meets PQ at R and OR meets BC at S, then the value of OS2 can be written in
the form m

n where m,n are relatively prime positive integers. Find 100m+ n.

Proposed by Vincent Huang.

Answer. 240607 .

Solution. By the Law of Cosines, ∠A = 60◦. Since ∠BOC = 120◦ = 180◦ − A we know A,P,O,Q
are concyclic. Then the Simson line of O with respect to triangle APQ must be line MN , which meets
PQ at R, implying OR ⊥ PQ.

Now define S′ as the point on BC with B,S′, O,Q concyclic. By Miquel’s Theorem on triangle ABC
and points S′, P,Q, we know that C,P,O, S′ are concyclic as well. It’s easy to see ∠QS′O = ∠QBO =
∠OAQ = ∠OPQ = 90◦ − ∠C and similarly we deduce 90◦ − ∠B = ∠PQO = ∠PS′O, implying O
is the orthocenter of triangle PQS′, hence OS′ ⊥ PQ. Therefore S′ = S. Furthermore, from the
angle-chasing we know that 4SPQ ∼ 4ABC.

Let H be the orthocenter of4ABC. Since ∠A = 60◦ it’s well-known and easy to prove that AH = AO.
Therefore by the similarity, OS is equal to the circumradius of 4PQS.

Let R,R′ be the circumradii of triangles ABC,POQ. Since O is the orthocenter of PQS we know that
(POQ), (PSQ) are congruent, so it suffices to find the circumradius of (APOQ). By the Law of Sines
in 4APO, we know that R = AO = 2R′ sin∠APO = 2R′ sin(C + 30◦).

By standard methods we can compute [ABC] = 10
√

3, R = 7√
3
, cosC = 11

14 , sinC = 5
√

3
14 , so it’s not

hard to find OS2 = 2401
507 , yielding an answer of 240607.
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18. Let p be an odd prime number less than 105. Granite and Pomegranate play a game. First, Granite
picks a integer c ∈ {2, 3, . . . , p−1}. Pomegranate then picks two integers d and x, defines f(t) = ct+d,
and writes x on a sheet of paper. Next, Granite writes f(x) on the paper, Pomegranate writes f(f(x)),
Granite writes f(f(f(x))), and so on, with the players taking turns writing. The game ends when two
numbers appear on the paper whose difference is a multiple of p, and the player who wrote the most
recent number wins. Find the sum of all p for which Pomegranate has a winning strategy.

Proposed by Yang Liu.

Answer. 65819 .

Solution. Let’s say that c, d are already chosen. Let f0 be the sequence defined by f0 = x and

fi+1 = cfi +d. Then fi = − d
c−1 +

(
x+ d

c−1

)
· ci. To prevent losing, Pomegranate would of course first

choose and x 6= − d
c−1 . (Or else fi is a constant sequence).

Otherwise, the sequence fi repeats with period equal to ordp(c). So for Granite to win, he needs ordp(c)
to be odd. Since p > c > 1 (a condition), we need for p− 1 to have an odd factor > 1. This happens
unless p is a Fermat prime. So the sum of all possible primes is 3 + 5 + 17 + 257 + 65537 = 65819.

19. For each integer 1 ≤ j ≤ 2017, let Sj denote the set of integers 0 ≤ i ≤ 22017 − 1 such that
⌊

i
2j−1

⌋
is

an odd integer. Let P be a polynomial such that

P (x0, x1, . . . , x22017−1) =
∏

1≤j≤2017

1−
∏
i∈Sj

xi

 .

Compute the remainder when ∑
(x0,...,x22017−1)∈{0,1}2

2017

P (x0, . . . , x22017−1)

is divided by 2017.

Proposed by Ashwin Sah.

Answer. 1840 .

Solution. First of all, the set Sj is exactly the set of all integers in [0, 22017− 1] whose j-th rightmost
digit in binary is odd. The value of P is equal to 1 if and only if for each j, there is at least one integer
i ∈ Sj such that xi = 0. If we consider a bijection between all the integers in [0, 22017 − 1] with the
set of all subsets T0, T1, . . . , T22017−1 of T = {1, 2, . . . , 2017} such that j ∈ Ti if and only if i ∈ Sj , and
consider each tuple (x0, x1, . . . , x22017−1) as a way of choosing a subset of {T0, T1, . . . , T22017−1} (where
0 correspond to chosen and 1 correspond to not chosen), then for P to be equal to 1, the union of
these chosen subsets must be equal to T itself. Therefore it suffices to count the number of ways to
pick such a collection of subsets.

The number of ways to pick a collection of subsets whose union is a subset of a fixed (2017−s)-element

subset is equal to 222017−s

. So by PIE, we find that the number of ways is
∑2017
s=0 (−1)s

(
2017
s

)
222017−s ≡

222017−2 (mod 2017). We notice 22017 ≡ 27 (mod 2016) so that we find 227−2 ≡ 1840 (mod 2017).

20. Let n be a fixed positive integer. For integer m satisfying |m| ≤ n, define Sm =
∑

i−j=m
0≤i,j≤n

1

2i+j
. Then

lim
n→∞

(
S2
−n + S2

−n+1 + ...+ S2
n

)
7
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can be expressed in the form
p

q
for relatively prime positive integers p, q. Compute 100p+ q.

Proposed by Vincent Huang.

Answer. 8027 .

Solution. Let ai =
1

2i
. We wish to consider the expression (a0an)2 +(a0an−1 +a1an)2 + ...+(an−1a0 +

ana1)2 + (ana0)2.

Each parenthesis consists of terms of the form aiaj with i− j fixed. So if we expand, we get something

of the form
∑

i−j=k−l

aiajakal. The key observation is that we can also write this sum in the form∑
i+l=j+k

aiajakal, and grouping these terms by the value of i + l = j + k, the expression becomes

(a0a0)2 + (a0a1 + a1a0)2 + ... + (an−1an + anan−1)2 + (anan)2 =
1

40
+

4

41
+ ... +

(n+ 1)2

4n
+

n2

4n+1
+

(n− 1)2

4n+2
+ ...+

1

42n
.

As n approaches infinity, this sum approaches
∑
i≥0

(i+ 1)2

4i
, which evaluates to

80

27
by standard methods,

so the answer is 8027.

21. Let Z≥0 be the set of nonnegative integers. Let f : Z≥0 → Z≥0 be a function such that, for all
a, b ∈ Z≥0:

f(a)2 + f(b)2 + f(a+ b)2 = 1 + 2f(a)f(b)f(a+ b).

Furthermore, suppose there exists n ∈ Z≥0 such that f(n) = 577. Let S be the sum of all possible
values of f(2017). Find the remainder when S is divided by 2017.

Proposed by Zack Chroman.

Answer. 1191 .

Solution. Note that P (0, 0) =⇒ f(0) = 1. Then, letting f(1) = k, P (1,m) =⇒ f(m + 1)2 −
2kf(m)f(m+ 1) = 1− k2 − f(m)2. By P (1,m− 1), this quadratic is satisfied by f(m− 1), so either
f(m + 1) = f(m − 1) or f(m + 1) = 2kf(m) − f(m − 1). If f(2) = 1, f(3) is k in both cases, and
iterating this we see that the function goes 1, k, 1, k, 1, k, . . . . It turns out this function works, so we
can have f(2017) = 577 by taking k = 577.

Otherwise, we have f(2) = 2k2− 1. Then, f(3) ∈ {k, 4k3− 3k}. If f(3) = k, f(4) is one of 2k2− 1 and
1. However, P (2, 2) =⇒ f(4) = 1 or f(4) = 2f(2)2− 1 = 8k4− 8k2 + 1. If this is also 2k2− 1, solving
the resulting quadratic gives k = ±1, but then f(2) = 1 which puts us back in the first case. Then we
take f(4) = 1. Then we immediately get f(5) = f(3) = k, and P (4, 2) tells us that f(6) = 2k2 − 1,
not 1. In general, we get f repeats the sequence {1, k, 2k2 − 1, k}. Noting that 577 = 2 · 172 − 1, and
2017 ≡ 3 (mod 4), this gives the possible value of 17 for f(2017).

In the final case, we take f(3) = 4k3 − 3k. I claim that from here on out, f(n) is defined as f(n) =
2kf(n− 1)− f(n− 2). This is clear upon computing P (1, n− 1)−P (2, n− 2), which is linear in f(n).
It remains to determine which of these sequences 577 belongs to. We already know that k = 17 works,
and clearly k = 577 works. It turns out f(4) = 577 when k = 3, and these are all the cases. Noting
that f(n) = 1

2

(
(3 + 2

√
2)n + (3− 2

√
2)n
)

gives f(2017) ≡ 3 (mod 2017), and similarly when k = 17
and k = 577, f(2017) ≡ 17 (mod 2017) and f(2017) ≡ 577 (mod 2017) respectively. But in this case
f(2017) 6= 17 or 577, so they need to be included separately. The sum of all answers modulo 2017 is
577 + 17 + (3 + 17 + 577) = 1191.
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22. Let S = {(x, y) | −1 ≤ xy ≤ 1} be a subset of the real coordinate plane. If the smallest real number
that is greater than or equal to the area of any triangle whose interior lies entirely in S is A, compute
the greatest integer not exceeding 1000A.

Proposed by Yannick Yao.

Answer. 5828 .

Solution. It is clear that the boundary of S is composed of two hyperbolas, namely xy = 1 and
xy = −1. For ease of reference, we call the four branches of the two hyperbolas by the quadrant
number they lie in (i.e. branch 1, branch 2, etc.).

Note that the affine transformation (x, y)→ (kx, y/k) preserves both hyperbola and any area for any
positive number k. Also note that the triangle with maximal area necessarily has at least one side
tangent to the boundary of S (otherwise we would have three vertices on three different branches, and
we could always slide one of them away from the opposite side, increasing the area until one side is
tangent), so we may assume that the side is tangent at T (1, 1) (after rotation and the aforementioned
transformation).

The line x + y = 2 intersects branch 2 and 4 at points P (1 −
√

2, 1 +
√

2) and Q(1 +
√

2, 1 −
√

2)
respectively, and if we let R = (−1,−1), we may see that PR and QR are also tangent to branch 2
and branch 4 at P and Q respectively. From this, we may deduce that if we choose P ′ on the interior
of PT and Q′ on the interior of QT , then the tangent line to branch 2 through P ′ and the tangent line
to branch 4 through Q′ always intersect outside S (in Quadrant 3). As a result, we can always choose
a point R′ on branch 3 such that either R′P ′ is tangent to branch 2 or R′Q′ is tangent to branch 4.
WLOG assume the former case is true, then we can make sure that R′ is to the left of R, and so either
(1) we can move Q′ to Q and get a larger area, or (2) in the process of doing (1), we got stuck at a
point where R′Q′ is tangent to branch 3.

We show that (2) is impossible. In fact, if we do the affine transformation to make the tangent point
on branch 2 (−1, 1), then similar to the argument in the preceeding paragraph, we can show that Q′

needs to be outside S since it’s the intersection of two tangent lines, which contradicts the assumption
of (2) itself.

Therefore, a maximal triangle necessarily have two vertices on the adjacent branches. With this in
mind, we restart and WLOG let these two vertices be A(a, 1/a) (on branch 1) and B(b,−1/b) (on

branch 4). Notice that the tangent line to branch 4 through A has equation y = 3+2
√

2
a2 (x − a) + 1

a ,

which intersects branch 4 at ((
√

2 − 1)a,−(
√

2 + 1)/a), implying that b
a ≥
√

2 − 1. Similarly we can

show that a
b ≥
√

2− 1. Therefore, we have a2+b2

ab = a
b + b

a ∈ [2, 2
√

2].

It is obvious that the maximal triangle when points A and B are fixed has the third vertex C being the
intersection of the line tangent to branch 2 through A and the line tangent to branch 3 through B. (If
we place C to the right of AB where AC and BC are tangent to branch 1 and branch 4 respectively,
then we may extend rays CA and CB to intersect branch 2 and branch 3 at A′ and B′ respectively

and get a larger area.) Since the equations of the two tangent lines are y = 3−2
√

2
a2 (x − a) + 1

a and

y = −3+2
√

2
b2 (x− b)− 1

b , we get that the intersection is

C = (−(2 + 2
√

2)
ab(a+ b)

a2 + b2
, (2− 2

√
2)

b− a
a2 + b2

).

And the area is equal to

1

2
((b− xC)(

1

a
− yC)− (a− xC)(−1

b
− yC)) =

1

2
(
a2 + b2

ab
+

8ab

a2 + b2
+ 4
√

2).

Due to the result we established in the previous paragraph, it is not difficult to see that the right-hand

side is maximized when a2+b2

ab = 2, or when a = b, and the maximum is 1
2 (2 + 8

2 + 4
√

2) = 3 + 2
√

2.
This maximum can be achieved with the triangle whose vertices are at A = (1, 1), B = (1,−1), and
C = (−2− 2

√
2, 0). Since 3 + 2

√
2 ≈ 5.8284, the final answer is 5828.
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23. Determine the number of ordered quintuples (a, b, c, d, e) of integers with 0 ≤ a < b < c < d < e ≤ 30
for which there exist polynomials Q(x) and R(x) with integer coefficients such that

xa + xb + xc + xd + xe = Q(x)(x5 + x4 + x2 + x+ 1) + 2R(x).

Proposed by Michael Ren.

Answer. 5208 .

Solution. Work in F2. First, we claim that x5 + x4 + x2 + x + 1 is irreducible. If it were reducible,
it would have to be divisible by an irreducible polynomial of degree 1 or 2. Thus, we only have to
consider divisibility by x, x+ 1, and x2 + x+ 1. But x5 + x4 + x2 + x+ 1 = x(x+ 1)2(x2 + x+ 1) + 1,
so it is not divisible by any of those, as desired.

Now consider a root z of x5 +x4 +x2 +x+1. Since x5 +x4 +x2 +x+1 is irreducible, z is an element of
F32. Note that the order of a nonzero element of F32 divides 31, so it is either 1 or 31. Since the only
element with order 1 is 1, z must have order 31, which means that it is a primitive root in F32. Hence,
1, z, z2, . . . , z30 are the nonzero elements of F32. Furthermore, x5 +x4 +x2 +x+1 | xa+xb+xc+xd+xe

if and only if za + zb + zc + zd + ze = 0. Hence, we just want to find the number of ways 5 distinct
elements of F32 can add to 0.

We will first suppose that they are ordered and divide by 5! at the end. Note that we can just choose
4 random distinct elements and the fifth will be uniquely determined (it is actually their sum). This
results in 31 · 30 · 29 · 28 ways. The only catch is that the fifth element might be the same as one of
the first four or 0. To resolve this, we first count the number of ways 3 distinct elements of F32 can
add to 0. By choosing 2 random distinct elements and taking their sum as the third, we have that
there are 31 · 30 ways. It is not possible for their sum to be equal to one of them, because that implies
that the other is 0. Now, the number of overcounted quintuples is simply 31 · 30 · 4 · 28, since there
are 4 ways to choose three of the first four entries to sum to 0 and 28 ways to choose the element
for the remaining entry and the last entry. Also, note that the number of ways for four elements to
sum to 0 is 31 · 30 · 29 − 31 · 30 by a similar argument to what we had before. Hence, our answer is
31·30·29·28−31·30·4·28−31·30·29+31·30

5! = 31·30·24·28
120 = 5208.

24. For any positive integer n, let Sn denote the set of positive integers which cannot be written in the
form an+ 2017b for nonnegative integers a and b. Let An denote the average of the elements of Sn if
the cardinality of Sn is positive and finite, and 0 otherwise. Compute⌊ ∞∑

n=1

An
2n

⌋
.

Proposed by Tristan Shin.

Answer. 840 .

Solution. Let m = 2017. It is clear that An > 0 if and only if (m,n) = 1 and n ≥ 2. Now, fix n that
works.

I first claim that an integer k is not in Sn if and only if we can express k = xm+yn with x, y ∈ N0 and
x ≤ n − 1. The if direction is trivial. Assume that the only if direction is false. Take k = x0m + y0n
with x0 ≥ n and let z =

⌊
x0

n

⌋
. We then have that k = x0m + y0n = (x0 − nz)m + (y0 +mz)n. It is

obvious that x0 − nz ∈ N0, so this is a contradiction (take x = x0 − nz and y = y0 +mz). Thus, the
claim is true.

Now, what does this mean? This means that in the expression(
1 + xm + x2m + . . .+ x(n−1)m

) (
1 + xn + x2n + . . .

)
=

1− xmn

1− xm
· 1

1− xn
,

10
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the generating function for the set of k with k = xm + yn for x, y ∈ N0 and x ≤ n − 1, is also the
generating function for the integers that are in Sn. Thus,

1

1− x
− 1− xmn

(1− xm) (1− xn)

is the generating function for the integers that are in Sn. (Side note: combining these terms into one
fraction and comparing the degrees of the numerator and denominator gives us the so-called Chicken
McNugget Theorem.)

Thus, if

F (x) =
1

1− x
− 1− xmn

(1− xm) (1− xn)
,

then |Sn| = lim
x→1

F (x) and the sum of the elements of Sn is lim
x→1

F ′ (x).

We have that

F (x) =
1

1− x
−

n−1∑
i=0

xmi

1− xn
=

1− xn −
n−1∑
i=0

xmi +

n−1∑
i=0

xmi+1

1− x− xn + xn+1
.

To find the limit of F as x→ 1, we apply L’Hopital’s rule twice:

lim
x→1

F (x) = lim
x→1

−n (n− 1)xn−2 −
n−1∑
i=1

mi (mi− 1)xmi−2 +

n−1∑
i=1

mi (mi+ 1)xmi−1

−n (n− 1)xn−2 + (n+ 1)nxn−1

=
1

2n

(
−n (n− 1) + 2m

n−1∑
i=1

i

)
=

1

2n
(−n (n− 1) +mn (n− 1))

=
(m− 1) (n− 1)

2
.

Therefore, the size of Sn is |Sn| = (m−1)(n−1)
2 .

Now, rewrite F as

F (x) =
1

1− x
+

n−1∑
i=0

xmi

xn − 1
.

Then

F ′ (x) =
1

(x− 1)
2 +

(
n−1∑
i=1

mixmi−1

)
(xn − 1)− n

(
n−1∑
i=0

xmi

)
xn−1

(xn − 1)
2

=

(xn − 1)
2

+

(
n−1∑
i=1

mixmi−1

)
(xn − 1) (x− 1)

2 − n

(
n−1∑
i=0

xmi

)
xn−1 (x− 1)

2

(x− 1)
2

(xn − 1)
2

=

(
n−1∑
i=0

xi

)2

+

(
n−1∑
i=1

mixmi−1

)
(xn − 1)− n

(
n−1∑
i=0

xmi

)
xn−1

(xn − 1)
2

=

(
n−1∑
i=0

xi

)2

+

n−1∑
i=1

(mi− n)xmi+n−1 −
n−1∑
i=1

mixmi−1 − nxn−1

x2n − 2xn + 1
.

11
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It follows from applying L’Hopital’s rule twice that

lim
x→1

F ′ (x) = lim
x→1

2

(
n−1∑
i=1

ixi−1

)2

+ 2

(
n−1∑
i=0

xi

)(
n−1∑
i=2

i (i− 1)xi−2

)
+

n−1∑
i=1

(mi− n) (mi+ n− 1) (mi+ n− 2)xmi+n−3

−
n−1∑
i=1

mi (mi− 1) (mi− 2)xmi−3 − n (n− 1) (n− 2)xn−3

2n (2n− 1)x2n−2 − 2n (n− 1)xn−2

=
1

2n2


n2 (n− 1)

2

2
+
n2 (n− 1) (2n− 1)

3
− n2 (n− 1)− n (n− 1) (n− 2)

+

n−1∑
i=1

(mi− n) (mi+ n− 1) (mi+ n− 2)−mi (mi− 1) (mi− 2)


=

(n− 1)
2

4
+

(n− 1) (2n− 1)

6
− n− 1

2
− (n− 1) (n− 2)

2n
+

1

2n2

n−1∑
i=1

m2ni2 −mn2i− n (n− 1) (n− 2)

=

(n− 1)
2

4
+

(n− 1) (2n− 1)

6
− n− 1

2
− (n− 1) (n− 2)

2n
+
m2 (n− 1) (2n− 1)

12

− mn (n− 1)

4
− (n− 1)

2
(n− 2)

2n

=
(m− 1) (n− 1) (2mn−m− n− 1)

12

after mass simplification.

Thus, the sum of the elements of Sn is (m−1)(n−1)(2mn−m−n−1)
12 , so the average of the elements of Sn

is 2mn−m−n−1
6 .

Thus, if y = 1
2 ,

∞∑
n=1

An
2n

=

∞∑
n=1

(2m− 1)n− (m+ 1)

6
yn − m− 2

6
y −

∞∑
k=1

(2m− 1)mk − (m+ 1)

6
ymk

= −m− 2

12
+

2m− 1

6

∞∑
n=1

nyn − m+ 1

6

∞∑
n=1

yn − m (2m− 1)

6

∞∑
k=1

k (ym)
k

+
m+ 1

6

∞∑
k=1

(ym)
k

= −m− 2

12
+

(2m− 1) y

6 (1− y)
2 −

(m+ 1) y

6 (1− y)
− m (2m− 1) ym

6 (1− ym)
2 +

(m+ 1) ym

6 (1− ym)

= −m− 2

12
+

2m− 1

3
− m+ 1

6
− m (2m− 1) 2m

6 (2m − 1)
2 +

m+ 1

6 (2m − 1)
.

As

−m− 2

12
+

2m− 1

3
− m+ 1

6
=

5m− 4

12
= 840 +

1

12

and

− 1

12
< −2017 · 4033 · 22017

6 (22017 − 1)
2 +

2018

6 (22017 − 1)
<

11

12

is clear, we have that ⌊ ∞∑
n=1

An
2n

⌋
= 840.

Note: Along the way, we divided out by certain terms at the right times to allow for easier applications
of L’Hopital’s rule. We take advantage of the fact that the number of times that L’Hopital’s rule at a

12
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constant must be applied is the multiplicity of that constant in both the numerator and denominators.
Straight-out using L’Hopital’s rule would require 6 applications, but using the divisions shown in this
solution only requires second derivatives.

25. A simple hyperplane in R4 has the form

k1x1 + k2x2 + k3x3 + k4x4 = 0

for some integers k1, k2, k3, k4 ∈ {−1, 0, 1} that are not all zero. Find the number of regions that the
set of all simple hyperplanes divide the unit ball x2

1 + x2
2 + x2

3 + x2
4 ≤ 1 into.

Proposed by Yannick Yao.

Answer. 5376 .

Solution. Note that it does not matter that we are looking at a unit ball since all simple hyperplane
spass through the origin. We can replace it with [−1, 1]4 or simply its surface and still have the same
answer. This hypercube has 8 3-dimensional faces (that are separated by simple hyperplanes of the
form xi − xj = 0 or xi + xj = 0 where i 6= j, and it suffices to consider one of the faces, say x4 = 1.
Within this face, the simple hyperplanes x1 = 0, x2 = 0, x3 = 0 separate the face into 23 = 8 identical
unit cubes, and it suffices to consider one of them, say 0 ≤ x1, x2, x3 ≤ 1.

The simple hyperplanes that cut through this cube are:

x1 = x2, x2 = x3, x3 = x1, x1 + x2 = 1, x1 + x3 = 1, x2 + x3 = 1, x1 + x2 + x3 = 1,

x1+x2−x3 = 0, x1+x2−x3 = 1, x1−x2+x3 = 0, x1−x2+x3 = 1,−x1+x2+x3 = 0,−x1+x2+x3 = 1.

(Note that the constant 1 is allowed since x4 = 1 and one can set k4 = −1.)

In order to visualize the arrangement of these cuts, one can consider their intersections with x3 = t for
different values of t and draw them inside the unit square 0 ≤ x1, x2 ≤ 1 as moving/stationary lines
parametrized by t. The following six diagrams show the situation when 0 < t < 1

4 ,
1
4 < t < 1

3 ,
1
3 < t <

1
2 ,

1
2 < t < 2

3 ,
2
3 < t < 3

4 ,
3
4 < t < 1 respectively:

13
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(Note that the asymmetry on the top-right corner comes from the absence of the plane x1+x2+x3 = 2.)

Whenever three (or more) lines pass through a common point or when two parallel line coincide, a new
region is created after they separate. These regions, along with the original ones, are shaded in gray
in the above diagrams. One can count that there are 42 + 4 + 8 + 22 + 6 + 2 = 84 regions in total in
this unit cube. Therefore in total there are 8 · 8 · 84 = 5376 regions in the original unit ball.

26. Let ABC be a triangle with AB = 13, BC = 15, AC = 14, circumcenter O, and orthocenter H, and
let M,N be the midpoints of minor and major arcs BC on the circumcircle of ABC. Suppose P ∈
AB,Q ∈ AC satisfy that P,O,Q are collinear and PQ||AN , and point I satisfies IP ⊥ AB, IQ ⊥ AC.
Let H ′ be the reflection of H over line PQ, and suppose H ′I meets PQ at a point T . If MT

NT can be

written in the form
√
m
n for positive integers m,n where m is not divisible by the square of any prime,

then find 100m+ n.

Proposed by Vincent Huang.

Answer. 31418 .

Solution. Let S = PQ ∩ BC and S′ ∈ BC with BQ,CP,AS′ concurrent. Let X = (APQ) ∩
(ABC), X ′ = (SS′X) ∩ (ABC), and A′ be the antipode of A on (ABC).

It’s clear that X is the center of a spiral similarity sending PQ to BC. By Ceva’s Theorem on
BQ,CP,AS′ and AP = AQ we know that r = XP

XQ = BP
CQ = BS′

CS′ , so that XS′ bisects ∠BXC, hence

X ∈ S′M . Similarly, by Menelaus, SB : SC = −r, implying X ∈ SN . Since X = (AI) ∩ (AA′)
we deduce that X ∈ IA′. Now let T ′ = XI ∩ PQ so that ∠PXQ is bisected by XT , implying that
PT
TQ = r. Then the spiral similarity sending PQ to BC sends T ′ to S′, so we deduce XSS′T ′ is cyclic.

But MX ⊥ NX =⇒ SX ⊥ S′X, so that T ′ is the projection of S′ onto PQ.

Now I claim that T = T ′. Since (S, S′;B,C) is harmonic and S′T ⊥ ST we deduce S′T, ST bisect
∠BTC. It suffices to show that T ′H,T ′I, or equivalently T ′H,T ′A′, are isogonal in ∠BT ′C, as this
would imply that H ′, T ′, I are collinear.

To do this we note that BPT ′ ∼ CQT ′ by AA similarity, so that ∠T ′BA = ∠T ′CA. Then ∠HBA =
∠HCA implies ∠HBT ′ = ∠HCT ′. If we let BH ∩CT ′ = B′, CH ∩BT ′ = C ′ then BCB′C ′ is cyclic,
hence T ′B′ : T ′C ′ = TB : TC. Remark that ∠BT ′C and ∠BAC have parallel angle bisectors. Then
since B′H ′ belongs to the direction ⊥AC , which is isogonal in ∠BTC to the direction of BA′, which is
⊥AB , and similarly for C ′H ′, CA′, we can deduce that figures T ′B′HC ′, T ′BA′C are inversely similar
in ∠BT ′C, hence T ′H,T ′A′ are isogonal as desired. (This paragraph can also be phrased in terms of
hyperbolas, but I don’t think it’s necessary.)

Now we have established that T = T ′. Note that (SS′) must be an Apollonius circle in 4XBC, hence
XBX ′C is harmonic so X ′B : X ′C = r, so the Angle Bisector Theorem yields that X ′ ∈ SM,S′N .

Since (S, S′;B,C) is harmonic, we know (SS′), (ABC) are orthogonal. Let the S-Apollonius circle
of SMN meet (SS′) at a point T ′′ 6= S. Since (SS′) and the S-Apollonius circle of SMN are both
orthogonal to (ABC) we know the inversion about (ABC) swaps S, T ′′, so it follows that T ′′ = T .
Then TM

TN = SM
SN = sinSNM

sinSMN = XM
X′N .

We can verify that XM = MB2

S′M , NX ′ = NB2

NS′ so the ratio becomes NS′

S′M
MB2

NB2 .

Now we perform computations. cosA = 5
13 by Law of Cosines, sin 0.5A = 2√

13
, cos 0.5A = 3√

13
by half-

angle, [ABC] = 84 by Heron’s Formula, R = 65
8 by [ABC] = abc

4R , BM = 2R sin 0.5A = 65
2
√

13
, BN =

2R cos 0.5A = 65·3
4
√

13
by Law of Sines.

Next we can compute AM = 117
2
√

13
by Ptolemy on ABMC. Then since APMQ is a rhombus we know

AP = 0.5AM 1
cos 0.5A = 39

4 , so that BP = 13
4 , CQ = 17

4 , r = 13
17 .

Next, by this ratio we know BS′ = 13
2 , CS

′ = 17
2 . By Stewart’s Theorem on BMC we know BM2 =

MS′2 +BS′ · CS′ =⇒ MS′ =
√

26. Similarly, we find NS′ =
√

157·13
4 .
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Then NS′

S′M
MB2

NB2 =
√

314
18 , so the answer is 31418.

27. Let N be the number of functions f : Z/16Z→ Z/16Z such that for all a, b ∈ Z/16Z:

f(a)2 + f(b)2 + f(a+ b)2 ≡ 1 + 2f(a)f(b)f(a+ b) (mod 16).

Find the remainder when N is divided by 2017.

Proposed by Zack Chroman.

Answer. 793 .

Solution. First, note that if we send f(x) → f(x) + 8, the equation will still be true. Then WLOG
assume that the image of f is contained within {0, . . . , 7}, and we’ll multiply by 216 at the end to
compensate.

Let P (x, y) denote the statement f(x)2 + f(y)2 + f(x+ y)2 ≡ 1 + 2f(x)f(y)f(x+ y) (mod 16). Note
that P (x, x) =⇒ 2f(x)2 + f(2x)2 ≡ 1 + 2f(x)2f(x+ y) (mod 16) =⇒ f(2x) ≡ 1 (mod 2).

So f maps evens to odds. Furthermore, for x,y odd, P (x, y) =⇒ f(x)2 + f(y)2 ≡ 2f(x)f(y)
(mod 4) =⇒ (f(x)− f(y))2 ≡ 0 (mod 4)

So either f sends odds to odds or odds to evens.

Case 1: f sends odds to evens Then for x, y odd, P (x, y) =⇒ f(x)2 + f(y)2 ≡ 0 (mod 8). Then
f(x) ≡ f(y) (mod 4).

Subcase 1: f(odd) ≡ 0 (mod 4)

Then P (x, y) for x, y odd gives f(x + y)2 ≡ 1 (mod 16), so f(even) ∈ {1, 5}. Now, P (a, b) for a, b
even gives f(a)f(b)f(a + b) ≡ 1 (mod 8). That is, an even number of f(a), f(b), f(a + b) are 5. In
particular, f(2a) = 1.

If a, b ≡ 2 (mod 4), P (a, b) =⇒ f(a) = f(b). This value can be either 1 or 5, and by the above all
equations will work out (checking P(odd,even) is straightforward). Then there are 2 · 28 possibilities
in this case; 2 for all the 2 mod 4 numbers, and 2 for each odd, which can be 0 or 4.

Subcase 2: f(odd) ≡ 2 (mod 4)

Take x, y odd. Note that f(x)2 ≡ 4 (mod 16).

P (x, y) =⇒ 8 + f(x+ y)2 ≡ f(x)2 + f(y)2 + f(x+ y)2 ≡ 1 + 2f(x)f(y)f(x+ y) ≡ 9 (mod 16).

Then f(even) ∈ {1, 7}. Now for a, b even, 3 ≡ f(a)2 + f(b)2 + f(a+ b)2 ≡ 1 + 2f(a)f(b)f(a+ b). Thus
f(a)f(b)f(a + b) ≡ 1 (mod 8). We finish as in subcase 1, and get that there are 28 · 2 possibilities in
this subcase; 2 for assigning the evens, and 2 for each odd, which can be any of {2, 6}.
Case 2: f sends odds to odds Note that P (x, y) ⇐⇒ 3 ≡ 1 + 2f(x)f(y)f(x+ y) (mod 8).

Thus f(x)f(y)f(x + y) ≡ 1 (mod 4). In particular, f(2x) ≡ 1 (mod 4). Going back to the equation,
if x, y are of the same parity, f(x) ≡ f(y) (mod 4).

Now, let f(1) = a. Then for any n,m,

P (n,m) ⇐⇒ f(n)2 + f(m)2 + f(n+m)2 ≡ 1 + 2f(n)f(m)f(n+m) (mod 16)

⇐⇒ f(n)2 + f(m)2 + f(n+m)2 + 8 ≡ 1 + 2f(n)f(m)f(n+m) + 8 (mod 16)

⇐⇒ f(n)2 + (f(m) + 4)2 + f(n+m)2 ≡ 1 + 2f(n)(f(m) + 4)f(n+m) (mod 16)

This tells us that increasing or decreasing one of the values of f by 4 will not make a difference. We can
then assume that f(odd) = a, and multiply by 27 at the end. Furthermore, since f(2x) ≡ 1 (mod 4),
assume f(even) = 1, and multiply by 28 at the end. It’s easy to verify that any solution of this form
works. There are 217 solutions in this case; 28 for the even numbers and 4 · 27 for the odds.

The answer is 216 · (29 + 29 + 217) = 8657043456 ≡ 793 (mod 2017)
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28. Let S denote the set of fractions
m

n
for relatively prime positive integers m and n with m+n ≤ 10000.

The least fraction in S that is strictly greater than

∞∏
i=0

(
1− 1

102i+1

)

can be expressed in the form
p

q
, where p and q are relatively prime positive integers. Find 1000p+ q.

Proposed by James Lin.

Answer. 3862291 .

Solution. It’s well known that
1

∞∏
i=0

(
1− x2i+1

) =

∞∏
i=1

(1 + xi). Note that for k ≥ 1,
[
xk
] ∞∏
i=1

(1 + xi) is

the number of partitions of k into distinct positive integers. By splitting into the number of parts in
each partition, one may compute the that

∞∏
i=1

(1 + xi) = 1 +

∞∑
i=1

xi(i+1)/2

(1− x)(1− x2) · · · (1− xi)
.

In our scenario, for x =
1

10
, this means

∞∏
i=1

(
1 +

1

10i

)
= 1 +

(
1

9
+

1

9 · 99

)
+

(
1

9 · 99 · 999
+

1

9 · 99 · 999 · 9999
+ · · ·

)
= 1 +

100

891
+ ε,

where
1

890109
< ε <

1

890109

1− 1

9999

<
1

890019
.

Now, let Fn be the set of positive irreducible fractions less than 1 with denominator less than or equal

to n. We need to find a lower bound
m

n
of N =

100

891
+ ε satisfying m+ 2n ≤ 10000 and m ≥ 100

891
n, so

we need to approximate N by a fraction that certainly is in F4735. By the theory of Farey Sequences,

the smallest element
a

b
in F891 that is larger than

100

891
must satisfy 891a− 100b = 1 and b ≤ 891. We

can solve this to get a = 11 and b = 98, and then note that
11

98
− 100

891
=

1

98 · 891
=

1

87318
> ε. Then,

by the theory of Farey Sequences, the fraction with the smallest denominator between
100

891
and

11

98
is

111

989
, and

111

989
− 100

891
=

1

989 · 891
=

1

881199
> ε. The largest fraction in F4734 that is less than

111

989

is
100 + 3 · 111

891 + 3 · 989
=

433

3858
. Note that

433

3858
− 100

891
=

1

1145826
< ε. Hence, the desired fraction in S is

3858

433 + 3858
=

3858

4291
. Hence, our answer is 3862291.

Note: Our given expression is about 0.89909092, while
3858

4291
≈ 0.89909112 and

989

1100
≈ 0.89909091.

29. Let ABC be a triangle with AB = 2
√

6, BC = 5, CA =
√

26, midpoint M of BC, circumcircle Ω, and
orthocenter H. Let BH intersect AC at E and CH intersect AB at F . Let R be the midpoint of EF
and let N be the midpoint of AH. Let AR intersect the circumcircle of AHM again at L. Let the
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circumcircle of ANL intersect Ω and the circumcircle of BNC at J and O, respectively. Let circles
AHM and JMO intersect again at U , and let AU intersect the circumcircle of AHC again at V 6= A.

The square of the length of CV can be expressed in the form
m

n
for relatively prime positive integers

m and n. Find 100m+ n.

Proposed by Michael Ren.

Answer. 1376029 .

Solution. Consider Ψ, the inversion at A with power AH ∗ AD. I claim that Ψ(G) = S,Ψ(M) = Q.
This is pretty straightforward to verify, in particular noting that Ψ(BC) = (AH). Then Ψ(L) =
AR ∩ Ψ(H)Ψ(M) = AR ∩ DQ. Call this point La. Then since Ψ(N) is the reflection of A over BC,
call it Na, Ψ(J) = NaLa ∩ EF .

lemma : Ψ(J) lies on AM .

This would imply that J = AM ∩ Ω.

proof : First, note that B,H,Q,C,Na are cyclic on the reflection γ of Ω over BC. Then, −1 =

(D,S;B,C)
H
= (Na, Q;B,C)γ = (A,Q∗;B,C)Ω.

Here Q∗ is the reflection of Q over BC, which by the above lies on the A−symmedian. In particular,
A,R,Q′ collinear. Let I = AR ∩BC ∩NaQ. Then, working over RP2,

(A,Q; Ψ(J),M)
Na= (D, I;NaLa∩BC,M)

La= (D,A;Na,MLa∩AD)
M
= (I, A;Q′, La)

Q
= (Na, A;∞AD, D) =

−1.

Therefore, Ψ(J) lies on the polar of M with respect to circle (AEHF ), which is just line EF , as
desired. This completes that lemma. As a corollary, note that J is the reflection of Q over M .

Lemma : O is the reflection of R over M .

Proof : By repeated power of a point, MN ∗MO = AM ∗MJ = MB ∗MC = ME2 = MR ∗MN.

Lemma : J,M,O, S′ are cyclic on the circle of diameter MS′ proof : By the previous two lemmas,
it suffices to show that S,R,Q,M,G are cyclic on the circle of diameter (SM). This follows from
inversion with respect to the circle of diameter (BC), which sends S → D,R→ N,Q→ A,G→ H.

Lemma : AG,AU are isogonal in ∠BAC

Proof : Let AU intersect (JMO) again at U1, and let M1 be the antipode of M on (AHM). Note
that M ′, U, S′ collinear. Then

∠S′MU1 = ∠S′UU1 = ∠AUM ′ = ∠AMM ′ = ∠DMH = ∠SMG

Therefore, since G lies on (SM), we have U1 = G′, the reflection of G over the perpendicular bisector
of BC. Since GG′ ‖ BC, and G,G′ ∈ Ω, it follows that lines AG,AG′ = AU are isogonal in ∠BAC,
and in particular BG = CG′.

Lemma : BG = CV

Proof : Consider the circle at C with radius BG, call it ω. By the previous lemma U1 = G′ lies on
this circle. Clearly so does the reflection G′′ of G′ over AC. G′′ lies on (AHC) since G′ lies on (ABC).

Let P be the second intersection of ω, (AHC). By construction ∠PAC = ∠CAG′′′ = ∠CAG′, so
P ∈ AG′. Therefore, P = V , and V ∈ ω, as desired.

Since SBG and SAC are similar by antiparallels, BG = BS·AC
AS . Let AD = x, BD = y, CD = z. We

will find BS, AC, and AS in terms of x, y, and z.

Note that DM ·DS = DB ·DC, so DS = 2yz
z−y . Then BS = DS−y = y2+yz

z−y , and AS2 = DS2 +AD2 =

x2 + 4y2z2

(y−z)2 = x2(y−z)2+4y2z2

(y−z)2 . We also clearly have AC2 = x2 + z2.

Thus, BG2 = (y2+yz)2(x2+z2)
x2(y−z)2+4y2z2 . Now it suffices to compute x, y, z. We have y+z = 5 and y2−z2 = −2, so

y−z = − 2
5 . This means that y = 23

10 and z = 27
10 . The Pythagorean Theorem gives x2 = 24− 529

100 = 1871
100 .
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Now, we just have to plug everything in for the answer, which is 232·502·26
1871·42+4·232·272 = 232·252·26

1871·4+232·272 =
232·252·26

393125 = 232·26
629 = 13754

629 . Therefore the answer is 1376029.

30. Let p = 2017 be a prime. Given a positive integer n, let T be the set of all n× n matrices with entries
in Z/pZ. A function f : T → Z/pZ is called an n-determinant if for every pair 1 ≤ i, j ≤ n with i 6= j,

f(A) = f(A′),

where A′ is the matrix obtained by adding the jth row to the ith row.

Let an be the number of n-determinants. Over all n ≥ 1, how many distinct remainders of an are

possible when divided by
(pp − 1)(pp−1 − 1)

p− 1
?

Proposed by Ashwin Sah.

Answer. 12106 .

Solution. Notice that (pp−1)(pp−1−1)
p−1 = (pp−1 − 1)

(
pp−1
p−1

)
, and that those two terms are relatively

prime.

Let B,C be two rows of the matrix. Then an n-determinant remains constant when we transform
them to (B+C,C) and (B+ 2C,C), and so on. Thus (B+ (p− 1)C,C) is equivalent, so (B−C,C) is
as well and then (B − C,B) is equivalent so (−C,B) is as well after adding p− 1 times. Thus we can
”swap rows,” to some extent.

Now if xy ≡ 1 (mod p) then we can send (B,C) to (B + xC,C) to (B + xC,C − y(B + xC)) =
(B + xC,−yB) to (B + xC + x(−yB),−yB) = (xC,−yB) to (yB, xC). Thus we can ”scale rows,” to
some extent.

Thus, we can easily perform steps equivalent to row reduction and reduce any matrix to a near-reduced
row echelon form with the exact same n-determinant value.

If the rows are linearly dependent, we will obtain an all zero row and using it to scale other rows, we
can reduce fully to reduced row echelon form.

Otherwise, we can reduce the matrix to the identity matrix, except the upper left element is the nonzero
determinant of the original matrix, since the operations we perform preserve the determinant.

Furthermore, since the reduced row echelon form is unique, we can easily show that any matrix reduces
to precisely one of these end matrices.

Thus the number of functions as desired is simply pSn , where Sn is the number of such final matrices.

Simple counting shows that Sn = (p− 1) +
∑n−1
k=0 p

−(k
2)sk, counting the nonzero determinant matrices

with p−1 and counting the other rref forms with the latter sum, where sk =
∑
a1,...,ak∈{0,1,...,n−1} p

a1+···+ak

where we sum over distinct ai. (s0 = 1 since we must count the all zero matrix.)

Then pSn (mod pp−1 − 1) reduces to p2n−1 (mod pp−1 − 1) while pSn (mod pp−1
p−1 ) reduces to pn−1

(mod pp−1
p−1 ).

Now the value of n (mod p) determines the latter value - and all p possibilities are distinct -, while
the value of 2n (mod p − 1) determines the former. There are p possibilities for the first. For the
second, let v = v2(p − 1) and d = ord p−1

2v
(2). Then n = 1, . . . , v − 1 give v − 1 distinct values while

n = v, v + 1, . . . , v + d− 1 give d values which repeat forever.

This gives a total of pd+ (v − 1) residues for the answer by the Chinese Remainder Theorem a bunch
of times, since gcd(d, p) = 1.

Now for p = 2017 we have v = 5, d = 6. Thus we find 2017 · 6 + 4 = 12106.
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